

 Navigation

 	
 index

 	ioredis stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/ioredis/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/ioredis/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ioredis stable documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 API.html

 Navigation

 		
 index

 		ioredis stable documentation »

Classes

		Redis ⇐ [EventEmitter](http://nodejs.org/api/events.html#events_class_events_eventemitter)

		

		Cluster ⇐ [EventEmitter](http://nodejs.org/api/events.html#events_class_events_eventemitter)

		

		Commander

		

Members

		defaultOptions

		Default options

		defaultOptions

		Default options

[bookmark: Redis]
Redis ⇐ [EventEmitter](http://nodejs.org/api/events.html#events_class_events_eventemitter)
Kind: global class
Extends: [EventEmitter](http://nodejs.org/api/events.html#events_class_events_eventemitter), [Commander](#Commander)
		Redis ⇐ EventEmitter [http://nodejs.org/api/events.html#events_class_events_eventemitter]
		new Redis([port], [host], [options])

		instance
		.connect(callback) ⇒ Promise

		.disconnect()

		~~.end()~~

		.duplicate()

		.monitor([callback])

		.getBuiltinCommands() ⇒ Array.<

string>

		.createBuiltinCommand(commandName) ⇒ object

		.defineCommand(name, definition)

		static
		~~.createClient()~~

[bookmark: new_Redis_new]

new Redis([port], [host], [options])

Creates a Redis instance

| Param | Type | Default | Description |
| — | — | — | — |
| [port] | number

|

 string |

 Object | 6379 | Port of the Redis server, or a URL string(see the examples below), or the options object(see the third argument). |
| [host] | string |

 Object | "

localhost"

 | Host of the Redis server, when the first argument is a URL string, this argument is an object represents the options. |
| [options] | Object | | Other options. |
| [options.port] | number | 6379 | Port of the Redis server. |
| [options.host] | string | "

localhost"

 | Host of the Redis server. |
[options.family]	string	4	Version of IP stack. Defaults to 4.
[options.path]	string	null	Local domain socket path. If set the port, host and family will be ignored.
[options.password]	string	null	If set, client will send AUTH command with the value of this option when connected.
[options.enableReadyCheck]	boolean	true	When a connection is established to the Redis server, the server might still be loading the database from disk. While loading, the server not respond to any commands. To work around this, when this option is true, ioredis will check the status of the Redis server, and when the Redis server is able to process commands, a ready event will be emitted.
[options.enableOfflineQueue]	boolean	true	By default, if there is no active connection to the Redis server, commands are added to a queue and are executed once the connection is “ready” (when enableReadyCheck is true, “ready” means the Redis server has loaded the database from disk, otherwise means the connection to the Redis server has been established). If this option is false, when execute the command when the connection isn’t ready, an error will be returned.
[options.connectTimeout]	number	10000	The milliseconds before a timeout occurs during the initial connection to the Redis server.
[options.autoResubscribe]	boolean	true	After reconnected, if the previous connection was in the subscriber mode, client will auto re-subscribe these channels.
[options.autoResendUnfulfilledCommands]	boolean	true	If true, client will resend unfulfilled commands(e.g. block commands) in the previous connection when reconnected.
[options.lazyConnect]	boolean	false	By default, When a new Redis instance is created, it will connect to Redis server automatically. If you want to keep disconnected util a command is called, you can pass the lazyConnect option to the constructor:
[options.keyPrefix]	string	"	

‘

‘

"

 | The prefix to prepend to all keys in a command. javascript var redis = new Redis({ lazyConnect: true }); // No attempting to connect to the Redis server here. // Now let's connect to the Redis server redis.get('foo', function () { }); |
| [options.retryStrategy] | function | | See “Quick Start” section |

Example

var Redis = require('ioredis');

var redis = new Redis();
// or: var redis = Redis();

var redisOnPort6380 = new Redis(6380);
var anotherRedis = new Redis(6380, '192.168.100.1');
var unixSocketRedis = new Redis({ path: '/tmp/echo.sock' });
var unixSocketRedis2 = new Redis('/tmp/echo.sock');
var urlRedis = new Redis('redis://user:password@redis-service.com:6379/');
var urlRedis2 = new Redis('//localhost:6379');
var authedRedis = new Redis(6380, '192.168.100.1', { password: 'password' });

[bookmark: Redis+connect]

redis.connect(callback) ⇒ Promise

Create a connection to Redis.
This method will be invoked automatically when creating a new Redis instance.

Kind: instance method of RedisAccess: public

Param	Type
—	—
callback	function

[bookmark: Redis+disconnect]

redis.disconnect()

Disconnect from Redis.

This method closes the connection immediately,
and may lose some pending replies that haven’t written to client.
If you want to wait for the pending replies, use Redis#quit instead.

Kind: instance method of RedisAccess: public[bookmark: Redis+end]

~~redis.end()~~

Deprecated

Disconnect from Redis.

Kind: instance method of Redis[bookmark: Redis+duplicate]

redis.duplicate()

Create a new instance with the same options as the current one.

Kind: instance method of RedisAccess: publicExample

var redis = new Redis(6380);
var anotherRedis = redis.duplicate();

[bookmark: Redis+monitor]

redis.monitor([callback])

Listen for all requests received by the server in real time.

This command will create a new connection to Redis and send a
MONITOR command via the new connection in order to avoid disturbing
the current connection.

Kind: instance method of RedisAccess: public

Param	Type	Description
—	—	—
[callback]	function	The callback function. If omit, a promise will be returned.

Example

var redis = new Redis();
redis.monitor(function (err, monitor) {
 // Entering monitoring mode.
 monitor.on('monitor', function (time, args) {
 console.log(time + ": " + util.inspect(args));
 });
});

// supports promise as well as other commands
redis.monitor().then(function (monitor) {
 monitor.on('monitor', function (time, args) {
 console.log(time + ": " + util.inspect(args));
 });
});

[bookmark: Commander+getBuiltinCommands]

redis.getBuiltinCommands() ⇒ Array.<

string>

Return supported builtin commands

Kind: instance method of RedisReturns: Array.

<

string>

 - command listAccess: public[bookmark: Commander+createBuiltinCommand]

redis.createBuiltinCommand(commandName) ⇒ object

Create a builtin command

Kind: instance method of RedisReturns: object - functionsAccess: public

Param	Type	Description
—	—	—
commandName	string	command name

[bookmark: Commander+defineCommand]

redis.defineCommand(name, definition)

Define a custom command using lua script

Kind: instance method of Redis

Param	Type	Default	Description
—	—	—	—
name	string		the command name
definition	object		
definition.lua	string		the lua code
[definition.numberOfKeys]	number		the number of keys. If omit, you have to pass the number of keys as the first argument every time you invoke the command

[bookmark: Redis.createClient]

~~Redis.createClient()~~

Deprecated

Create a Redis instance

Kind: static method of Redis[bookmark: Cluster]

Cluster ⇐ EventEmitter [http://nodejs.org/api/events.html#events_class_events_eventemitter]

Kind: global classExtends: EventEmitter [http://nodejs.org/api/events.html#events_class_events_eventemitter], Commander

		Cluster ⇐ EventEmitter [http://nodejs.org/api/events.html#events_class_events_eventemitter]
		new Cluster(startupNodes, options)

		.disconnect()

		.getBuiltinCommands() ⇒ Array.<

string>

		.createBuiltinCommand(commandName) ⇒ object

		.defineCommand(name, definition)

		.sendCommand()

[bookmark: new_Cluster_new]

new Cluster(startupNodes, options)

Creates a Redis Cluster instance

| Param | Type | Default | Description |
| — | — | — | — |
| startupNodes | Array.

<

Object>

	An array of nodes in the cluster, [{ port: number, host: string }]		
options	Object		
[options.enableOfflineQueue]	boolean	true	See Redis class
[options.lazyConnect]	boolean	false	See Redis class
[options.readOnly]	boolean	false	Connect in READONLY mode
[options.maxRedirections]	number	16	When a MOVED or ASK error is received, client will redirect the command to another node. This option limits the max redirections allowed to send a command.
[options.clusterRetryStrategy]	function		See “Quick Start” section
[options.retryDelayOnFailover]	number	2000	When an error is received when sending a command(e.g. “Connection is closed.” when the target Redis node is down),
[options.retryDelayOnClusterDown]	number	1000	When a CLUSTERDOWN error is received, client will retry if retryDelayOnClusterDown is valid delay time.

[bookmark: Cluster+disconnect]

cluster.disconnect()

Disconnect from every node in the cluster.

Kind: instance method of ClusterAccess: public[bookmark: Commander+getBuiltinCommands]

cluster.getBuiltinCommands() ⇒ Array.<

string>

Return supported builtin commands

Kind: instance method of ClusterReturns: Array.

<

string>

 - command listAccess: public[bookmark: Commander+createBuiltinCommand]

cluster.createBuiltinCommand(commandName) ⇒ object

Create a builtin command

Kind: instance method of ClusterReturns: object - functionsAccess: public

Param	Type	Description
—	—	—
commandName	string	command name

[bookmark: Commander+defineCommand]

cluster.defineCommand(name, definition)

Define a custom command using lua script

Kind: instance method of Cluster

Param	Type	Default	Description
—	—	—	—
name	string		the command name
definition	object		
definition.lua	string		the lua code
[definition.numberOfKeys]	number		the number of keys. If omit, you have to pass the number of keys as the first argument every time you invoke the command

[bookmark: Commander+sendCommand]

cluster.sendCommand()

Send a command

Kind: instance abstract method of ClusterOverrides: sendCommandAccess: public[bookmark: Commander]

Commander

Kind: global class

		Commander
		new Commander()

		.getBuiltinCommands() ⇒ Array.<

string>

		.createBuiltinCommand(commandName) ⇒ object

		.defineCommand(name, definition)

		.sendCommand()

[bookmark: new_Commander_new]

new Commander()

Commander

This is the base class of Redis, Redis.Cluster and Pipeline

Param	Type	Default	Description
—	—	—	—
[options.showFriendlyErrorStack]	boolean	false	Whether to show a friendly error stack. Will decrease the performance significantly.

[bookmark: Commander+getBuiltinCommands]

commander.getBuiltinCommands() ⇒ Array.<

string>

Return supported builtin commands

Kind: instance method of CommanderReturns: Array.

<

string>

 - command listAccess: public[bookmark: Commander+createBuiltinCommand]

commander.createBuiltinCommand(commandName) ⇒ object

Create a builtin command

Kind: instance method of CommanderReturns: object - functionsAccess: public

Param	Type	Description
—	—	—
commandName	string	command name

[bookmark: Commander+defineCommand]

commander.defineCommand(name, definition)

Define a custom command using lua script

Kind: instance method of Commander

Param	Type	Default	Description
—	—	—	—
name	string		the command name
definition	object		
definition.lua	string		the lua code
[definition.numberOfKeys]	number		the number of keys. If omit, you have to pass the number of keys as the first argument every time you invoke the command

[bookmark: Commander+sendCommand]

commander.sendCommand()

Send a command

Kind: instance abstract method of CommanderAccess: public[bookmark: defaultOptions]

defaultOptions

Default options

Kind: global variableAccess: protected[bookmark: defaultOptions]

defaultOptions

Default options

Kind: global variableAccess: protected

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/comment-close.png

search.html

 Navigation

 		
 index

 		ioredis stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

Changelog.html

 Navigation

 		
 index

 		ioredis stable documentation »

Changelog

Master Branch

v1.7.6 - September 1, 2015

		Fix errors when sending command to a failed cluster(#56 [https://github.com/luin/ioredis/issues/56]).

v1.7.5 - August 16, 2015

		Fix for allNodes array containing nodes not serving the specified slot. Thanks to henstock [https://github.com/henstock]

v1.7.4 - August 13, 2015

		Restore the previous state before resending the unfulfilled commands. Thanks to Jay Merrifield [https://github.com/fracmak]

		Fix empty pipeline not resolving as empty array. Thanks to Philip Kannegaard Hayes [https://github.com/phlip9]

v1.7.3 - August 3, 2015

		Handle watch-exec rollback correctly(#199 [https://github.com/luin/ioredis/pull/119]). Thanks to Andrew Newdigate [https://github.com/suprememoocow]

v1.7.2 - July 30, 2015

		Fix not running callback in pipeline custom command(#117 [https://github.com/luin/ioredis/pull/117]). Thanks to Philip Kannegaard Hayes [https://github.com/phlip9]

		Fixes status debug message in case of Unix socket path(#114 [https://github.com/luin/ioredis/pull/114]). Thanks to Thalis Kalfigkopoulos [https://github.com/tkalfigo]

v1.7.1 - July 26, 2015

		Re-subscribe previous channels after reconnection(#110 [https://github.com/luin/ioredis/pull/110]).

v1.7.0 - July 23, 2015

		Support transparent key prefixing(#105 [https://github.com/luin/ioredis/pull/105]). Thanks to Danny Guo [https://github.com/dguo]

v1.6.1 - July 12, 2015

		Fix Redis.Command not being exported correctly(#100 [https://github.com/luin/ioredis/issues/100]).

v1.6.0 - July 11, 2015

		Add a streaming interface to SCAN commands.

		Support GEO commands.

v1.5.12 - July 7, 2015

		Fix the order of received commands(#91 [https://github.com/luin/ioredis/issues/91]).

v1.5.11 - July 7, 2015

		Allow omitting callback in exec.

v1.5.10 - July 6, 2015

		Add send_command method for compatibility(#90 [https://github.com/luin/ioredis/issues/90]).

v1.5.9 - July 4, 2015

		Fix connection error emitting before listening to error event(#80 [https://github.com/luin/ioredis/issues/80]).

v1.5.8 - July 3, 2015

		Fix pmessage gets undefined in cluster mode(#88 [https://github.com/luin/ioredis/issues/88]). Thanks to Kris Linquist [https://github.com/klinquist]

v1.5.7 - July 1, 2015

		Fix subscriptions lost after reconnection(#85 [https://github.com/luin/ioredis/issues/85]).

v1.5.6 - June 28, 2015

		Silent error when redis server has cluster support disabled(#82 [https://github.com/luin/ioredis/issues/82]).

v1.5.5 - June 25, 2015

		Fix storing wrong redis host internally.

v1.5.4 - June 25, 2015

		Fix masterNodes not being removed correctly.

v1.5.3 - June 24, 2015

		Fix sometimes monitor leads command queue error.

v1.5.2 - June 24, 2015

		Fix enableReadyCheck is always false in monitor mode(#77 [https://github.com/luin/ioredis/issues/77]).

v1.5.1 - June 16, 2015

		Fix getting NaN db index(#74 [https://github.com/luin/ioredis/issues/74]).

v1.5.0 - June 13, 2015

		Uses double ended queue instead of Array for better performance.

		Resolves a bug with cluster where a subscribe is sent to a disconnected node(#63 [https://github.com/luin/ioredis/pull/63]). Thanks to Ari Aosved [https://github.com/devaos].

		Adds ReadOnly mode for Cluster mode(#69 [https://github.com/luin/ioredis/pull/69]). Thanks to Nakul Ganesh [https://github.com/luin/ioredis/pull/69].

		Adds Redis.print(#71 [https://github.com/luin/ioredis/pull/71]). Thanks to Frank Murphy [https://github.com/frankvm04].

v1.4.0 - June 3, 2015

		Continue monitoring after reconnection(#52 [https://github.com/luin/ioredis/issues/52]).

		Support pub/sub in Cluster mode(#54 [https://github.com/luin/ioredis/issues/54]).

		Auto-reconnect when none of startup nodes is ready(#56 [https://github.com/luin/ioredis/issues/56]).

v1.3.6 - May 22, 2015

		Support Node.js 0.10.16

		Fix unfulfilled commands being sent to the wrong db(#42 [https://github.com/luin/ioredis/issues/42]).

v1.3.5 - May 21, 2015

		Fix possible memory leak warning of Cluster.

		Stop reconnecting when disconnected manually.

v1.3.4 - May 21, 2015

		Add missing Promise definition in node 0.10.x.

v1.3.3 - May 19, 2015

		Fix possible memory leak warning.

v1.3.2 - May 18, 2015

		The constructor of pipeline/multi accepts a batch of commands.

v1.3.1 - May 16, 2015

		Improve the performance of sending commands(#35 [https://github.com/luin/ioredis/issues/35]). Thanks to @AVVS [https://github.com/AVVS].

v1.3.0 - May 15, 2015

		Support pipeline redirection in Cluster mode.

v1.2.7 - May 15, 2015

		Redis#connect returns a promise.

v1.2.6 - May 13, 2015

		Fix showFriendlyErrorStack not working in pipeline.

v1.2.5 - May 12, 2015

		Fix errors when sending commands after connection being closed.

v1.2.4 - May 9, 2015

		Try a random node when the target slot isn’t served by the cluster.

		Remove refreshAfterFails option.

		Try random node when refresh slots.

v1.2.3 - May 9, 2015

		Fix errors when numberOfKeys is 0.

v1.2.2 - May 8, 2015

		Add retryDelayOnClusterDown option to handle CLUSTERDOWN error.

		Fix multi commands sometimes doesn’t return a promise.

v1.2.1 - May 7, 2015

		Fix sendCommand sometimes doesn’t return a promise.

v1.2.0 - May 4, 2015

		Add autoResendUnfulfilledCommands option.

v1.1.4 - May 3, 2015

		Support get built-in commands.

v1.1.3 - May 2, 2015

		Fix buffer supporting in pipeline. Thanks to @AVVS [https://github.com/AVVS].

v1.1.2 - May 2, 2015

		Fix error of sending command to wrong node when slot is 0.

v1.1.1 - May 2, 2015

		Support Transaction and pipelining in cluster mode.

v1.1.0 - May 1, 2015

		Support cluster auto reconnection.

		Add maxRedirections option to Cluster.

		Remove roleRetryDelay option in favor of sentinelRetryStrategy.

		Improve compatibility with node_redis.

		More stable sentinel connection.

v1.0.13 - April 27, 2015

		Support SORT, ZUNIONSTORE and ZINTERSTORE in Cluster.

v1.0.12 - April 27, 2015

		Support for defining custom commands in Cluster.

		Use native array instead of fastqueue for better performance.

v1.0.11 - April 26, 2015

		Add showFriendlyErrorStack option for outputing friendly error stack.

v1.0.10 - April 25, 2015

		Improve performance for calculating slots.

v1.0.9 - April 25, 2015

		Support single node commands in cluster mode.

v1.0.8 - April 25, 2015

		Add promise supports in Cluster.

v1.0.7 - April 25, 2015

		Add autoResubscribe option to prevent auto re-subscribe.

		Add Redis#end for compatibility.

		Add Redis.createClient(was Redis#createClient).

v1.0.6 - April 24, 2015

		Support setting connect timeout.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

README.html

 Navigation

 		
 index

 		ioredis stable documentation »

 [image: ioredis] [https://github.com/luin/ioredis]

[image: Build Status] [https://travis-ci.org/luin/ioredis]
[image: Test Coverage] [https://codeclimate.com/github/luin/ioredis]
[image: Code Climate] [https://codeclimate.com/github/luin/ioredis]
[image: Dependency Status] [https://david-dm.org/luin/ioredis]
[image: Join the chat at https://gitter.im/luin/ioredis] [https://gitter.im/luin/ioredis?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

A robust, performance-focused and full-featured Redis [http://redis.io] client for Node [https://nodejs.org] and io.js [https://iojs.org].

Supports Redis >= 2.6.12 and (Node.js >= 0.10.16 or io.js).

Features

ioredis is a robust, full-featured Redis client that is
used in the world’s biggest online commerce company Alibaba [http://www.alibaba.com/] and many other awesome companies.

		Full-featured. It supports Cluster [http://redis.io/topics/cluster-tutorial], Sentinel [http://redis.io/topics/sentinel], Pipelining [http://redis.io/topics/pipelining] and of course Lua scripting [http://redis.io/commands/eval] & Pub/Sub [http://redis.io/topics/pubsub] (with the support of binary messages).

		High performance.

		Delightful API. It works with Node callbacks and Bluebird promises [https://github.com/petkaantonov/bluebird].

		Transformation of command arguments and replies.

		Transparent key prefixing.

		Abstraction for Lua scripting, allowing you to define custom commands.

		Support for binary data.

		Support for both TCP/IP and UNIX domain sockets.

		Support for offline queue and ready checking.

		Support for ES6 types, such as Map and Set.

		Support for GEO commands (Redis 3.2 Unstable).

		Sophisticated error handling strategy.

Links

		API Documentation

		Changelog

		Migrating from node_redis [https://github.com/luin/ioredis/wiki/Migrating-from-node_redis]

		Error Handling

		Benchmark

Quick Start

Install

$ npm install ioredis

Basic Usage

var Redis = require('ioredis');
var redis = new Redis();

redis.set('foo', 'bar');
redis.get('foo', function (err, result) {
 console.log(result);
});

// Or using a promise if the last argument isn't a function
redis.get('foo').then(function (result) {
 console.log(result);
});

// Arguments to commands are flattened, so the following are the same:
redis.sadd('set', 1, 3, 5, 7);
redis.sadd('set', [1, 3, 5, 7]);

Connect to Redis

When a new Redis instance is created,
a connection to Redis will be created at the same time.
You can specify which Redis to connect to by:

new Redis() // Connect to 127.0.0.1:6379
new Redis(6380) // 127.0.0.1:6380
new Redis(6379, '192.168.1.1') // 192.168.1.1:6379
new Redis('redis://:authpassword@127.0.0.1:6380/4') // 127.0.0.1:6380, db 4
new Redis('/tmp/redis.sock')
new Redis({
 port: 6379, // Redis port
 host: '127.0.0.1', // Redis host
 family: 4, // 4 (IPv4) or 6 (IPv6)
 password: 'auth',
 db: 0
})

See API Documentation for all available options.

Pub/Sub

Here is a simple example of the API for publish/subscribe.
The following program opens two client connections.
It subscribes to a channel with one connection
and publishes to that channel with the other:

var Redis = require('ioredis');
var redis = new Redis();
var pub = new Redis();
redis.subscribe('news', 'music', function (err, count) {
 // Now we are subscribed to both the 'news' and 'music' channels.
 // `count` represents the number of channels we are currently subscribed to.

 pub.publish('news', 'Hello world!');
 pub.publish('music', 'Hello again!');
});

redis.on('message', function (channel, message) {
 // Receive message Hello world! from channel news
 // Receive message Hello again! from channel music
 console.log('Receive message %s from channel %s', message, channel);
});

// There's also an event called 'messageBuffer', which is the same as 'message' except
// it returns buffers instead of strings.
redis.on('messageBuffer', function (channel, message) {
 // Both `channel` and `message` are buffers.
});

PSUBSCRIBE is also supported in a similar way:

redis.psubscribe('pat?ern', function (err, count) {});
redis.on('pmessage', function (pattern, channel, message) {});
redis.on('pmessageBuffer', function (pattern, channel, message) {});

When a client issues a SUBSCRIBE or PSUBSCRIBE, that connection is put into a “subscriber” mode.
At that point, only commands that modify the subscription set are valid.
When the subscription set is empty, the connection is put back into regular mode.

If you need to send regular commands to Redis while in subscriber mode, just open another connection.

Handle Binary Data

Arguments can be buffers:

redis.set('foo', new Buffer('bar'));

And every command has a method that returns a Buffer (by adding a suffix of “Buffer” to the command name).
To get a buffer instead of a utf8 string:

redis.getBuffer('foo', function (err, result) {
 // result is a buffer.
});

Pipelining

If you want to send a batch of commands (e.g. > 5), you can use pipelining to queue
the commands in memory and then send them to Redis all at once. This way the performance improves by 50%~300% (See benchmark section).

redis.pipeline() creates a Pipeline instance. You can call any Redis
commands on it just like the Redis instance. The commands are queued in memory
and flushed to Redis by calling the exec method:

var pipeline = redis.pipeline();
pipeline.set('foo', 'bar');
pipeline.del('cc');
pipeline.exec(function (err, results) {
 // `err` is always null, and `results` is an array of responses
 // corresponding to the sequence of queued commands.
 // Each response follows the format `[err, result]`.
});

// You can even chain the commands:
redis.pipeline().set('foo', 'bar').del('cc').exec(function (err, results) {
});

// `exec` also returns a Promise:
var promise = redis.pipeline().set('foo', 'bar').get('foo').exec();
promise.then(function (result) {
 // result === [[null, 'OK'], [null, 'bar']]
});

Each chained command can also have a callback, which will be invoked when the command
gets a reply:

redis.pipeline().set('foo', 'bar').get('foo', function (err, result) {
 // result === 'bar'
}).exec(function (err, result) {
 // result[1][1] === 'bar'
});

In addition to adding commands to the pipeline queue individually, you can also pass an array of commands and arguments to the constructor:

redis.pipeline([
 ['set', 'foo', 'bar'],
 ['get', 'foo']
]).exec(function () { /* ... */ });

Transaction

Most of the time, the transaction commands multi & exec are used together with pipeline.
Therefore, when multi is called, a Pipeline instance is created automatically by default,
so you can use multi just like pipeline:

redis.multi().set('foo', 'bar').get('foo').exec(function (err, results) {
 // results === [[null, 'OK'], [null, 'bar']]
});

If there’s a syntax error in the transaction’s command chain (e.g. wrong number of arguments, wrong command name, etc),
then none of the commands would be executed, and an error is returned:

redis.multi().set('foo').set('foo', 'new value').exec(function (err, results) {
 // err:
 // { [ReplyError: EXECABORT Transaction discarded because of previous errors.]
 // name: 'ReplyError',
 // message: 'EXECABORT Transaction discarded because of previous errors.',
 // command: { name: 'exec', args: [] },
 // previousErrors:
 // [{ [ReplyError: ERR wrong number of arguments for 'set' command]
 // name: 'ReplyError',
 // message: 'ERR wrong number of arguments for \'set\' command',
 // command: [Object] }] }
});

In terms of the interface, multi differs from pipeline in that when specifying a callback
to each chained command, the queueing state is passed to the callback instead of the result of the command:

redis.multi().set('foo', 'bar', function (err, result) {
 // result === 'QUEUED'
}).exec(/* ... */);

If you want to use transaction without pipeline, pass { pipeline: false } to multi,
and every command will be sent to Redis immediately without waiting for an exec invocation:

redis.multi({ pipeline: false });
redis.set('foo', 'bar');
redis.get('foo');
redis.exec(function (err, result) {
 // result === [[null, 'OK'], [null, 'bar']]
});

The constructor of multi also accepts a batch of commands:

redis.multi([
 ['set', 'foo', 'bar'],
 ['get', 'foo']
]).exec(function () { /* ... */ });

Inline transactions are supported by pipeline, which means you can group a subset of commands
in the pipeline into a transaction:

redis.pipeline().get('foo').multi().set('foo', 'bar').get('foo').exec().get('foo').exec();

redis.mset({ k1: 'v1', k2: 'v2' });
redis.get('k1', function (err, result) {
 // result === 'v1';
});

redis.mset(new Map([['k3', 'v3'], ['k4', 'v4']]));
redis.get('k3', function (err, result) {
 // result === 'v3';
});

Lua Scripting

ioredis supports all of the scripting commands such as EVAL, EVALSHA and SCRIPT.
However, it’s tedious to use in real world scenarios since developers have to take
care of script caching and to detect when to use EVAL and when to use EVALSHA.
ioredis expose a defineCommand method to make scripting much easier to use:

var redis = new Redis();

// This will define a command echo:
redis.defineCommand('echo', {
 numberOfKeys: 2,
 lua: 'return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}'
});

// Now `echo` can be used just like any other ordinary command,
// and ioredis will try to use `EVALSHA` internally when possible for better performance.
redis.echo('k1', 'k2', 'a1', 'a2', function (err, result) {
 // result === ['k1', 'k2', 'a1', 'a2']
});

// `echoBuffer` is also defined automatically to return buffers instead of strings:
redis.echoBuffer('k1', 'k2', 'a1', 'a2', function (err, result) {
 // result[0] === new Buffer('k1');
});

// And of course it works with pipeline:
redis.pipeline().set('foo', 'bar').echo('k1', 'k2', 'a1', 'a2').exec();

If the number of keys can’t be determined when defining a command, you can
omit the numberOfKeys property and pass the number of keys as the first argument
when you call the command:

redis.defineCommand('echoDynamicKeyNumber', {
 lua: 'return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}'
});

// Now you have to pass the number of keys as the first argument every time
// you invoke the `echoDynamicKeyNumber` command:
redis.echoDynamicKeyNumber(2, 'k1', 'k2', 'a1', 'a2', function (err, result) {
 // result === ['k1', 'k2', 'a1', 'a2']
});

Transparent Key Prefixing

This feature allows you to specify a string that will automatically be prepended
to all the keys in a command, which makes it easier to manage your key
namespaces.

var fooRedis = new Redis({ keyPrefix: 'foo:' });
fooRedis.set('bar', 'baz'); // Actually sends SET foo:bar baz

fooRedis.defineCommand('echo', {
 numberOfKeys: 2,
 lua: 'return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}'
});

// Works well with pipelining/transaction
fooRedis.pipeline()
 // Sends SORT foo:list BY foo:weight_*->fieldname
 .sort('list', 'BY', 'weight_*->fieldname')
 // Supports custom commands
 // Sends EVALSHA xxx foo:k1 foo:k2 a1 a2
 .echo('k1', 'k2', 'a1', 'a2')
 .exec()

Transforming Arguments & Replies

Most Redis commands take one or more Strings as arguments,
and replies are sent back as a single String or an Array of Strings. However, sometimes
you may want something different. For instance, it would be more convenient if the HGETALL
command returns a hash (e.g. { key: val1, key2: v2 }) rather than an array of key values (e.g. [key1, val1, key2, val2]).

ioredis has a flexible system for transforming arguments and replies. There are two types
of transformers, argument transformer and reply transformer:

var Redis = require('ioredis');

// Here's the built-in argument transformer converting
// hmset('key', { k1: 'v1', k2: 'v2' })
// or
// hmset('key', new Map([['k1', 'v1'], ['k2', 'v2']]))
// into
// hmset('key', 'k1', 'v1', 'k2', 'v2')
Redis.Command.setArgumentTransformer('hmset', function (args) {
 if (args.length === 2) {
 if (typeof Map !== 'undefined' && args[1] instanceof Map) {
 // utils is a internal module of ioredis
 return [args[0]].concat(utils.convertMapToArray(args[1]));
 }
 if (typeof args[1] === 'object' && args[1] !== null) {
 return [args[0]].concat(utils.convertObjectToArray(args[1]));
 }
 }
 return args;
});

// Here's the built-in reply transformer converting the HGETALL reply
// ['k1', 'v1', 'k2', 'v2']
// into
// { k1: 'v1', 'k2': 'v2' }
Redis.Command.setReplyTransformer('hgetall', function (result) {
 if (Array.isArray(result)) {
 var obj = {};
 for (var i = 0; i < result.length; i += 2) {
 obj[result[i]] = result[i + 1];
 }
 return obj;
 }
 return result;
});

There are three built-in transformers, two argument transformers for hmset & mset and
a reply transformer for hgetall. Transformers for hmset and hgetall were mentioned
above, and the transformer for mset is similar to the one for hmset.

Monitor

Redis supports the MONITOR command,
which lets you see all commands received by the Redis server across all client connections,
including from other client libraries and other computers.

The monitor method returns a monitor instance.
After you send the MONITOR command, no other commands are valid on that connection. ioredis will emit a monitor event for every new monitor message that comes across.
The callback for the monitor event takes a timestamp from the Redis server and an array of command arguments.

Here is a simple example:

redis.monitor(function (err, monitor) {
 monitor.on('monitor', function (time, args) {
 });
});

Streamify Scanning

Redis 2.8 added the SCAN command to incrementally iterate through the keys in the database. It’s different from KEYS in that
SCAN only returns a small number of elements each call, so it can be used in production without the downside
of blocking the server for a long time. However, it requires recording the cursor on the client side each time
the SCAN command is called in order to iterate through all the keys correctly. Since it’s a relatively common use case, ioredis
provides a streaming interface for the SCAN command to make things much easier. A readable stream can be created by calling scanStream:

var redis = new Redis();
// Create a readable stream (object mode)
var stream = redis.scanStream();
var keys = [];
stream.on('data', function (resultKeys) {
 // `resultKeys` is an array of strings representing key names
 for (var i = 0; i < resultKeys.length; i++) {
 keys.push(resultKeys[i]);
 }
});
stream.on('end', function () {
 console.log('done with the keys: ', keys);
});

scanStream accepts an option, with which you can specify the MATCH pattern and the COUNT argument:

var stream = redis.scanStream({
 // only returns keys following the pattern of `user:*`
 match: 'user:*',
 // returns approximately 100 elements per call
 count: 100
});

Just like other commands, scanStream has a binary version scanBufferStream, which returns an array of buffers. It’s useful when
the key names are not utf8 strings.

There are also hscanStream, zscanStream and sscanStream to iterate through elements in a hash, zset and set. The interface of each is
similar to scanStream except the first argument is the key name:

var stream = redis.hscanStream('myhash', {
 match: 'age:??'
});

You can learn more from the Redis documentation [http://redis.io/commands/scan].

Auto-reconnect

By default, ioredis will try to reconnect when the connection to Redis is lost
except when the connection is closed manually by redis.disconnect() or redis.quit().

It’s very flexible to control how long to wait to reconnect after disconnection
using the retryStrategy option:

var redis = new Redis({
 // This is the default value of `retryStrategy`
 retryStrategy: function (times) {
 var delay = Math.min(times * 2, 2000);
 return delay;
 }
});

retryStrategy is a function that will be called when the connection is lost.
The argument times means this is the nth reconnection being made and
the return value represents how long (in ms) to wait to reconnect. When the
return value isn’t a number, ioredis will stop trying to reconnect, and the connection
will be lost forever if the user doesn’t call redis.connect() manually.

When reconnected, the client will auto subscribe to channels that the previous connection subscribed to.
This behavior can be disabled by setting the autoResubscribe option to false.

And if the previous connection has some unfulfilled commands (most likely blocking commands such as brpop and blpop),
the client will resend them when reconnected. This behavior can be disabled by setting the autoResendUnfulfilledCommands option to false.

Connection Events

The Redis instance will emit some events about the state of the connection to the Redis server.

Event | Description
:————- | :————-
connect | client will emit connect once a connection is established to the Redis server.
ready | If enableReadyCheck is true, client will emit ready when the server reports that it is ready to receive commands (e.g. finish loading data from disk).
Otherwise, ready will be emitted immediately right after the connect event.
error | client will emit error when an error occurs while connecting.
However, ioredis emits all error events silently (only emits when there’s at least one listener) so that your application won’t crash if you’re not listening to the error event.
close | client will emit close when an established Redis server connection has closed.
reconnecting | client will emit reconnecting after close when a reconnection will be made. The argument of the event is the time (in ms) before reconnecting.
end | client will emit end after close when no more reconnections will be made.

You can also check out the Redis#status property to get the current connection status.

Offline Queue

When a command can’t be processed by Redis (being sent before the ready event), by default, it’s added to the offline queue and will be
executed when it can be processed. You can disable this feature by setting the enableOfflineQueue
option to false:

var redis = new Redis({ enableOfflineQueue: false });

Sentinel

ioredis supports Sentinel out of the box. It works transparently as all features that work when
you connect to a single node also work when you connect to a sentinel group. Make sure to run Redis >= 2.8.12 if you want to use this feature.

To connect using Sentinel, use:

var redis = new Redis({
 sentinels: [{ host: 'localhost', port: 26379 }, { host: 'localhost', port: 26380 }],
 name: 'mymaster'
});

redis.set('foo', 'bar');

The arguments passed to the constructor are different from the ones you use to connect to a single node, where:

		name identifies a group of Redis instances composed of a master and one or more slaves (mymaster in the example);

		sentinels are a list of sentinels to connect to. The list does not need to enumerate all your sentinel instances, but a few so that if one is down the client will try the next one.

ioredis guarantees that the node you connected to is always a master even after a failover. When a failover happens, instead of trying to reconnect to the failed node (which will be demoted to slave when it’s available again), ioredis will ask sentinels for the new master node and connect to it. All commands sent during the failover are queued and will be executed when the new connection is established so that none of the commands will be lost.

It’s possible to connect to a slave instead of a master by specifying the option role with the value of slave, and ioredis will try to connect to a random slave of the specified master, with the guarantee that the connected node is always a slave. If the current node is promoted to master due to a failover, ioredis will disconnect from it and ask the sentinels for another slave node to connect to.

Besides the retryStrategy option, there’s also a sentinelRetryStrategy in Sentinel mode which will be invoked when all the sentinel nodes are unreachable during connecting. If sentinelRetryStrategy returns a valid delay time, ioredis will try to reconnect from scratch. The default value of sentinelRetryStrategy is:

function (times) {
 var delay = Math.min(times * 10, 1000);
 return delay;
}

Cluster

Redis Cluster provides a way to run a Redis installation where data is automatically sharded across multiple Redis nodes.
You can connect to a Redis Cluster like this:

var Redis = require('ioredis');

var cluster = new Redis.Cluster([{
 port: 6380,
 host: '127.0.0.1'
}, {
 port: 6381,
 host: '127.0.0.1'
}]);

cluster.set('foo', 'bar');
cluster.get('foo', function (err, res) {
 // res === 'bar'
});

Cluster constructor accepts two arguments, where:

		The first argument is a list of nodes of the cluster you want to connect to.
Just like Sentinel, the list does not need to enumerate all your cluster nodes,
but a few so that if one is unreachable the client will try the next one, and the client will discover other nodes automatically when at least one node is connnected.

		The second argument is the option that will be passed to the Redis constructor when creating connections to Redis nodes internally. There are some additional options for the Cluster:

		clusterRetryStrategy: When none of the startup nodes are reachable, clusterRetryStrategy will be invoked. When a number is returned,
ioredis will try to reconnect to the startup nodes from scratch after the specified delay (in ms). Otherwise, an error of “None of startup nodes is available” will be returned.
The default value of this option is:

function (times) {
 var delay = Math.min(100 + times * 2, 2000);
 return delay;
}

		maxRedirections: When a MOVED or ASK error is received, the client will redirect the
command to another node. This option limits the max redirections allowed when sending a command. The default value is 16.

		retryDelayOnFailover: If the error of “Connection is closed.” is received when sending a command,
ioredis will retry after the specified delay. The default value is 2000. You should make sure retryDelayOnFailover * maxRedirections > cluster-node-timeout
to insure that no command will fail during a failover.

		retryDelayOnClusterDown: When a cluster is down, all commands will be rejected with the error of CLUSTERDOWN. If this option is a number (by default, it is 1000), the client
will resend the commands after the specified time (in ms).

Transaction and pipeline in Cluster mode

Almost all features that are supported by Redis are also supported by Redis.Cluster, e.g. custom commands, transaction and pipeline.
However there are some differences when using transaction and pipeline in Cluster mode:

		All keys in a pipeline should belong to the same slot since ioredis sends all commands in a pipeline to the same node.

		You can’t use multi without pipeline (aka cluster.multi({ pipeline: false })). This is because when you call cluster.multi({ pipeline: false }), ioredis doesn’t know which node the multi command should be sent to.

		Chaining custom commands in the pipeline is not supported in Cluster mode.

When any commands in a pipeline receives a MOVED or ASK error, ioredis will resend the whole pipeline to the specified node automatically if all of the following conditions are satisfied:

		All errors received in the pipeline are the same. For example, we won’t resend the pipeline if we got two MOVED errors pointing to different nodes.

		All commands executed successfully are readonly commands. This makes sure that resending the pipeline won’t have side effects.

Pub/Sub

Pub/Sub in cluster mode works exactly as the same as in standalone mode. Internally, when a node of the cluster receives a message, it will broadcast the message to the other nodes. ioredis makes sure that each message will only be received once by strictly subscribing one node at the same time.

var nodes = [/* nodes */];
var pub = new Redis.Cluster(nodes);
var sub = new Redis.Cluster(nodes);
sub.on('message', function (channel, message) {
 console.log(channel, message);
});

sub.subscribe('news', function () {
 pub.publish('news', 'highlights');
});

Events

If an error occurs when connecting to the node, the node error event will be emitted. Furthermore, if all nodes aren’t reachable,
the error event will be emitted silently (only emitting if there’s at least one listener) with a property of lastNodeError representing
the last node error received.

Scaling reads using slave nodes

Normally, commands are only sent to the masters since slaves can’t process write queries.
However, you can use the readOnly option to use slaves in order to scale reads:

var Redis = require('ioredis');
var cluster = new Redis.Cluster(nodes, { readOnly: true });

Native Parser

If hiredis [https://github.com/redis/hiredis-node] is installed (by npm install hiredis),
ioredis will use it by default. Otherwise, a pure JavaScript parser will be used.
Typically, there’s not much difference between them in terms of performance.

Error Handling

All the errors returned by the Redis server are instances of ReplyError, which can be accessed via Redis:

var Redis = require('ioredis');
var redis = new Redis();
// This command causes a reply error since the SET command requires two arguments.
redis.set('foo', function (err) {
 err instanceof Redis.ReplyError
});

When a reply error is not handled (no callback is specified, and no catch method is chained),
the error will be logged to stderr. For instance:

var Redis = require('ioredis');
var redis = new Redis();
redis.set('foo');

The following error will be printed:

Unhandled rejection ReplyError: ERR wrong number of arguments for 'set' command
 at ReplyParser._parseResult (/app/node_modules/ioredis/lib/parsers/javascript.js:60:14)
 at ReplyParser.execute (/app/node_modules/ioredis/lib/parsers/javascript.js:178:20)
 at Socket.<anonymous> (/app/node_modules/ioredis/lib/redis/event_handler.js:99:22)
 at Socket.emit (events.js:97:17)
 at readableAddChunk (_stream_readable.js:143:16)
 at Socket.Readable.push (_stream_readable.js:106:10)
 at TCP.onread (net.js:509:20)

But the error stack doesn’t make any sense because the whole stack happens in the ioredis
module itself, not in your code. So it’s not easy to find out where the error happens in your code.
ioredis provides an option showFriendlyErrorStack to solve the problem. When you enable
showFriendlyErrorStack, ioredis will optimize the error stack for you:

var Redis = require('ioredis');
var redis = new Redis({ showFriendlyErrorStack: true });
redis.set('foo');

And the output will be:

Unhandled rejection ReplyError: ERR wrong number of arguments for 'set' command
 at Object.<anonymous> (/app/index.js:3:7)
 at Module._compile (module.js:446:26)
 at Object.Module._extensions..js (module.js:464:10)
 at Module.load (module.js:341:32)
 at Function.Module._load (module.js:296:12)
 at Function.Module.runMain (module.js:487:10)
 at startup (node.js:111:16)
 at node.js:799:3

This time the stack tells you that the error happens on the third line in your code. Pretty sweet!
However, it would decrease the performance significantly to optimize the error stack. So by
default, this option is disabled and can only be used for debugging purposes. You shouldn’t use this feature in a production environment.

If you want to catch all unhandled errors without decreased performance, there’s another way:

var Redis = require('ioredis');
Redis.Promise.onPossiblyUnhandledRejection(function (error) {
 // you can log the error here.
 // error.command.name is the command name, here is 'set'
 // error.command.args is the command arguments, here is ['foo']
});
var redis = new Redis();
redis.set('foo');

Benchmark

Comparisons with node_redis [https://github.com/mranney/node_redis] on my iMac (Retina 5K, 27-inch, Late 2014):

> npm run bench
==========================
ioredis: 1.7.2
node_redis: 0.12.1
CPU: 4
OS: darwin x64
==========================

 simple set
 157,343 op/s » ioredis
 92,132 op/s » node_redis

 simple get
 156,274 op/s » ioredis
 92,040 op/s » node_redis

 simple get with pipeline
 13,501 op/s » ioredis
 10,016 op/s » node_redis

 lrange 100
 113,696 op/s » ioredis
 83,960 op/s » node_redis

 publish
 156,110 op/s » ioredis
 86,303 op/s » node_redis

 subscribe
 85,030 op/s » ioredis
 75,651 op/s » node_redis

 Suites: 6
 Benches: 12
 Elapsed: 90,547.08 ms

However, since there are many factors that can impact the benchmark, results may be different on your server (#25 [https://github.com/luin/ioredis/issues/25]).
You can find the code at benchmarks/*.js and run it yourself using npm run bench.

Running tests

Start a Redis server on 127.0.0.1:6379, and then:

$ npm test

FLUSH ALL will be invoked after each test, so make sure there’s no valuable data in it before running tests.

Debug

You can set the DEBUG env to ioredis:* to print debug info:

$ DEBUG=ioredis:* node app.js

Motivation

Originally, we used the Redis client node_redis [https://github.com/mranney/node_redis],
but over a period of time we found that it’s not robust enough for us to use
in our production environment. The library has some non-trivial bugs and many unresolved
issues on GitHub (165 so far). For instance:

var redis = require('redis');
var client = redis.createClient();

client.set('foo', 'message');
client.set('bar', 'Hello world');
client.mget('foo', 'bar');

client.subscribe('channel');
client.on('message', function (msg) {
 // Will print "Hello world", although no `publish` is invoked.
 console.log('received ', msg);
});

I submitted some pull requests, but sadly, none of them have been merged, so here’s ioredis.

Join in!

I’m happy to receive bug reports, fixes, documentation enhancements, and any other improvements.

And since I’m not a native English speaker, if you find any grammar mistakes in the documentation, please also let me know. :)

Contributors

		[image:]luin

		[image:]dguo

		[image:]nakulgan

		[image:]hayeah

		[image:]albin3

		[image:]phlip9

		[image:]fracmak

		[image:]suprememoocow

		[image:]lpinca

		[image:]devaos

		[image:]horx

		[image:]klinquist

		[image:]pyros2097

		[image:]nswbmw

		[image:]VikramTiwari

		[image:]henstock

		[image:]joeledwards

		[image:]igrcic

		[image:]devoto13

		[image:]ArtskydJ

		[image:]tkalfigo

		[image:]i5ting

		[image:]AVVS

Roadmap

		[] Connection Pool & Read Write Splitting

Acknowledgements

The JavaScript and hiredis parsers are modified from node_redis [https://github.com/mranney/node_redis] (MIT License, Copyright (c) 2010 Matthew Ranney, http://ranney.com/).

License

MIT

 © Copyright .
 Created using Sphinx 1.3.1.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

